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1. INTRODUCTION

This paper is concerned with a class of linear predictor-corrector
digital filters of the third order with three parameters. This class

includes the four digital filters that have been or are being used at

White Sands Missile Range (WSMR) of the United States Army. Two of them,
namely the McCool's QD filter [3] and Shepherd's third order parabolic
spline filter (4], were devised at WSMR for missile trajectory smoothing,
reconstruction and differentiation. All of them have applications in
real time radar tracking digital servomechanisms. The theory for this
paper was developed largely from internal notes of WSMR by Chui [1) and
Shepherd [4] although some laborious detail in [1] and [4] is not given
here. The class of linear prediétor-cofrector digital filters to be

discussed here can be defined as in the following. Set

w = [wl, Vo w3]T . ) ) (1.1)

Here, and throughout, the superscript T indicates the transpose of a
matrix. Hence, w in (1.1) is a three-dimensional constant colum
vector. If {xi}, {i=0,1, ..., denotes an input signal, h a

positive constant, and the sequence of three-dimensional vectors

2, = by, v} 905, (1.2)

i=0,1, ..., denotes the output response corresponaing to the input
T
signal {xi} and subject to the initial condition y ;, = [y_;» yll, y21] .

then the class of digital filters we consider is defined by

NPT . . — o e
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Zp-l-l = Ep(ph +h) + (xp+1 - Up(Ph + h))! (1.3)

for p=-1,0, 1, ..., where

1. 2 ‘
up(t) =Y, + y;(t - ph) +-Eyp(t ~ ph)”, and (1.4)

| " T
.E_P(t) - [up(t), up(t). up(t)] .

The real-valued function up(t) and the vector-valued function _l_np(t)
are both called predictor functions. Also, _\_gp(ph + h) is called the
prediction at the time ¢t = ph + h based on the output response xp, while
(xp+l
with w = {a, B/h, Y/h

- up(ph + h))w is called the correction at the time t = ph + h.
Z]T this filter appears as the general u-f-y filter
(cf. Steelman [5] and the references therein).

It is easy to verify that the filter (1.3), (1.4) is equivalent to

the filter

Ypyp =AY, T XY ' (1.5)
p=-1,0,1, ..., where A is the 3 x 3 matrix.

B 1 27]

1 - vy 1 - wl)h -i-(l - wl)h
1 2
A= -'JZ l-wzh h-zwzh
1 2
- - - Zw,h
i Wq w3h 1 7 V3 1 . (1.6)

This matrix formulation exhibits the filter as a third order linear
difference equation. With input {xi} where x, = 0 for 1i<0,
output {11}, i=0,1, ..., and initial value Y the general

solution can be shown by induction to be

- A|)-0-2

pt+l P
Yy_; *A xw + A X+ ... +Axp3+ xp+1_!-_ (1.7)

Yo+l




If the response due to arbitrary initial value Y, is to damp out, it

is apparent from (1.7) that

lim Anl:_ =0 for all x 1in R3. (1.8)

n->wo
The relationship between this observation and the stability of the filter
(1.5), (1.6) is developed in section 2. More precisely, we will show that

if all the eigenvalues Al’ AZ’ A3 of the matrix A lie in the open

unit disc |z| < 1, then the digital filter (1.3) - (1.4), or equivalently

(L.5) - (1.6), is stable. Furthermore, the condition IAjI <1, for

i=1, 2, 3, is satisfied if and only if the condition (1.8) is satisfied.

We will study this eigenvalue problem via z-transforms. This technique
will be extended to "uncouple" the system (1.3) - (1.4) solving for each
of the output response sequences {yp}, {y;}, and {y;} in terms of the
input signal {xp} and the initial conditions Y_p» yll, and yfl
respectively in recursive forms. These three recursive formulas will allow
the studying of each of the three output-response sequences {yp}, {y;},
and {y;}' individually without referring to the otﬁer two. In particular,
design criteria can be formulated.

In section 3, we will consider the special case of Shepherd's
"parabolic spline predictor corrector filter", which is obtained from

(1.5) and (1.6) by setting

26 2517
= |§, =, =
= [ h hg] : (1.9)

where & 1is considered as a design parameter.




In section 4 we consider somewhat more briefly McCool's "QD" filter

{3), for which (with w = [a, B/h, Y/hZ]T)

i 2
60M 2 2
| [a,B8,Y] =[ 3 ,» B ;’ Y = ‘21] ’
10M™ + 33"2 + 23M - 6 M

Morrison's "fading memory polynomial filter of degree 2" [5], for which

[o8,v] = (1-0%, 2a-0’a+e), a-0’,

. e———

and an a - B filter (for which one can set w3 =0 and y::l = (0 in

% { the beginning) studied by Gonzales in 1968 (cf. [21]).

2. STABILITY AND UNCOUPLING OF THE FILTERS

We will use the technique of z-transforms to study the class of
digital filters defined by (1.3) - (1.4), or equivalently (1.5) - (1.6).
If {bj} is a bi-infinite sequence of complex numbers, then the z-transform
of the sequence {bj}’ j= ool -1, b, 1, ..., is the formal Laurent

series

Qo
B(z) = § b.zJ .
jome 3
Let {xp}, {yp}, {y;} and {y;} be defined as in section 1. We will
set xP =0 if p <0, and yP - y; = y; =0 if p < -1. Hence, the

z-transforms of these sequences are given by

X(z) = § xzP,

»
n

L@ ] oy,

]
~~
<
N
-

Y, = Yz(z)

Y. = Y3(z) = w,"p

[
~

<

N




respectively. If we re-write the matrix system (1.5) in the form of a
system of three simultaneous difference equations and take the z-transforms
of each of these three equations, we obtain the following system of

simultaneous linear algebraic equations

( 1.2 1 2
- - - - —-— - — =
(z 1+w1)Y1 (h - hw )YZ (Zh Zh w )Y w_zX

1°°3

1,2
{ - - - -
WZY]_ + (z .1+hw2)Y2 (h 2h v, )Y3 wzzx

1,2 -
wa¥; + hey, + (z-145h"wy)Y, = wa2X . (2.1)

In matrix representation, (2.1) can be written as

(A~ 21DY), Yy, Y07 = -2ty (2.2)

2l

where 13 is the 3 x 3 identity matrix. Let Hl(z), Hz(z), and Hj(z)

be the transfer functions of this digital filter; chat is,

- ’ < .3
Y, (=) H, (2)X(2) (2.3)

for j =1, 2, 3. Then Hl(z), Hz(z), and H3(z) can be obtained by
; solving the linear system (2.2) using Cramer's rule. Hence, they are
rational functions in z-l with the same denominator det( A - 213)' This
' shows that if det(A - 2I,) # 0 for all z with |z7}| <1 or |z} > 1,
i ‘ or equivalently all the eigenvalues of A 1lie inside the unit circle ]z| =1,
“A

then the filter (1.3) - (1.4) is stable. Let A A3 be the (not

1’ 2°
necessarily distinct) eigenvalues of A and let x,, X X4 be three

corresponding linearly independent eigenvectors. Then for any X ¢ 1R3,
X=X, +0X, + a.x, for some constants @, @,, and G,. Hence, for

any positive integer n, we have




e

~—

Ax-axx azxzx +a 3__3.

This shows that if |Aj| <1 for j =1, 2, 3, then Au_§ +0 as n -~ o,

Conversely, if Angc_ +0 for all x €]R3, we can pick x=x, (j =1, 2, 3)

2T

to yield A, = A", +0 as n + . Since x, # 0, we must have
R | ' -]

A l, 1A,1s |A,] < 1. That is, we have established the following
1 2 3

THEOREM 2.1. Let Al’ )\2, A3 be the eigenvalues of the matrix A given

in (1.6) and A = wax(|A ], [A], [A5]). Then the digital filter (1.3) -

(1.4) is stable provided A < 1. Furthermore this stability condition

~

A <1 holds if and only if

1imA™ =0

-0

for all x €]R3.

We next determine the transfer functions Hl(z), Hz(z), and ll3(z).

To do this, we first compute det(zI3 - A). It is given by

3 + {(w1—3) + w.h +ig hz}z2

det(zI3-A) =z 2 7 W4

+ {(3-2w) - wph +—;‘-w3h2}z +w -1 . (2.4)

Hence, by Cramer's rule, we obtain

1 2
vy (w, -1)h —z-(wl—l)h
e 2zX(2) _ -1 1,2
Yl(z) det(zI3—A) w, z+w2h 1 2wzh h
1 2
wq w3h z+7w3h 1 (2.5)

- zX(z 2 1.2 \
det(z13-A) {wlz + (2w3h + W h - 2w )z-.- (2 wzh +w, ).




Similarly, we obtain

zX(z

Y,(z) = det(z1,-A

) (z—l)(wzz + hw3 - wz) .

zX(z)

2
Y (z) det(zI A) (z-1) Y3 -

Hence, the transfer functions Hl(z), Hz(z), and H3(z) as

defined in (2.3) can be written as

w+( h+wh-2w)z +(

—wh+w1) -2

(2.6)

(2.7)

Hl(z)

1+{(w1—3)+w2h+%w3h }21 +{(3-26)) - w,h +-]-'w nl}z2 + (w-1)z

273

-1
w, + (hw3 - 2w2)z + (w2 - hw

2

3z

-2

=5 (2.8)

H,(z) = 1 1

and

-1 -2
w, - 2w32 +u3z

3

2, -1 2, -2 -3
l+{(w1—3)+w2h+iw3h }z +{(3—2wl)—w2h+—2w3h }z + (w-D)z

(2.9)

H3(z) =

1 2, -1
1+ {(w1—3) +w2h +§v3h }z ~ + {(3—2w1) -w2h+

1 2, -2
-Ew3h }z +(w1-l)z

If we put the expressions (2.8), (2.9), and (2.10) back into (2.3),

multiply the denominator of H,(z) to Y

3

of each of the expressions for j =1, 2, and 3, we obtain the following

THEOREM 2.2. The digital filter givem by (1.3) ~ (1.4) can

three uncoupled recursive digital filters:

1

be written as

2 1,2
—{(w,~3) +w h+—w3h }yp_1 - {(3—2w1) -w,h +3w4h }yp_2

Yp 1 2" "2 2

1 .2
- (wl'-l)yp_3 + wlxp + (—2v3h +w2h- Zwllxp_l-i-

v om e 1 .2, Ctene _ 1
Yh {(w1 3) +w,h +5wh Jy")_l {3 2u)) - w,h +5w

273

1l .2
9293h - w2h +w1)xp—l

2y
h }yp_2

- - ' - -
(wy l)yp_3 + vVa¥o + (hw, Zslz)xp_l + (v, hw})xp__2 .

— {2.10)

(z), and take the inverse z-transforms
h|

(2.11)

(2.12)




" oo oo - 1 2, - _ _ 1 21 n
yp ((wl 3)-+w2h-+§w3h }yp_1 {(3 2w1) wzh-¥iw3h }yp_2
_ _ " -
(wl l)yp_3 + w3xp 2w3xp_1 + w3xp_2 s (2.13)

where p =0, 1, 2, ... with initial conditions y_y» ¥!» and y", and
where x, =0 for p<0 and yp=yl',=y;=0 for p < -1.

We now return to study the stability of the filter (1.3) - (1L.4) a
little closer via the transfer functions Hl(z), Hz(z), and ﬁ3(z).
From (2.4), putting 2z = 0, we see that det A = 1-w1. This says that
A =0 is an eigenvalue of A if and only if v, = 1. If wy = 0, then

the transfer function H3(z) is identically zero. On the other hand,

if Vg # 0, then the value z~1 =1 1is not a zero of Hl(z), while it

is a double zero of H3(z) and at least a simple zero of Hz(z). Hence,

in this case, all the eigenvalues A\ A A3 of A are essential in

1 "2

the consideration of stability. More precisely, we have the following.

COROLLARY 2.1. Let wq # 0. Then the digital filter (1.3) - (1.4) is

stable if and only if A := max(lkll, IAZI, IAZI) < 1.

3. A PARABOLIC SPLINE PREDICTOR-CORRECTOR DIGITAL FILTER

- . ’I‘
This filter is the special case w = [é, %?. %% . It was devised
N ’

by Shepherd [4]) and has the following property: Set

o - a;ﬁ';&._& AR B i B e . .4‘




PR

e ——— i 5 + PO O

- —

1 28 26 w, 28 .
vp(t) yp +yl')(t-ph) +2|: hZyp n Y + (1-8)y +h xpﬂ‘](c ph) (3.1)
and define v(t) on [0, =) by
v(t) = vp(t) for ph <t <ph +h, p=0,1, 2, ... . (3.2)

T
Here, the input signal {xp} and the output response Y, = [yp. y;, Y"]

satisfy the filter relationship (1.3) - (1.4) with w = [§, 26, 2% ]r

h
Using this relationship, it is easy to verify that the function v defined
by (3.2) is indeed a parabolic (or third order Cl) spline on [0, ) with

~

knots at {0, h, 2h, ...}. Since v(ph) = yp and v'(ph) = y;, the

spline function v together with its derivative v' interpolate the

output response [yp, y;]T at the t?me t=ph, p=0,1, ... . We

like to think of the input signal {xb} as a noisy measurement of {f(ph)}
where f 1is a fairly smooth function to be reconstructed, and the output
response Xp = [yp, y;, y;]T as an apptoximetion to [f(ph), f'(ph), f"(ph)]T.
The approximation improves as 6 tends to 1 as can be seen in (3.3)

below. Hence, the spline function v can be considered as an approximation

to the function f which we wish to reconstruct from the noisy data {xp}.

This particular filter is a one-parameter digital filter, parametrized

by 6. In fact, if we put w = [8, 26 26] in (1.3), then (1.3) - (1.4)
becomes -
(o4 = -8y, + L=y + U= W% +x
Pynag == By, + @-200y) + (-omys + B
[y;,‘ﬂ -- :—%yp - ZTGy", + (I-G)y; +:—gxpﬂ , (3.3) | ]
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i - ié .2_5. T 3
and in matrix form, we have _zp+1 Aaxp + xp+1[6, b hz 17, with
1 2
T 1-34 (1-8)h ‘z'(l-é)h ]
28
A(S = pire 1 -26 (1- 8)h
| h a (3.4)
If we put § =1, then 'yp+1 = xp+1 in (3.3). Hence, if & 1is close

to 1, the spline function v is indeed an "approximation" to the noisy
input daca {xp}. However, a digital filter must be stable. ThereEore, we
will discuss how close can & approach 1 so that the digital filter

defined by (3.3) remains stable. Since Wy = 26/h2 # 0, we conclude from

Corollary 2.1 that the digital filter is stable if and only if

A max(|A1|, IAZI, |A3|) <1 where A A

and A3 are the eigen-

s T 1> 20
values of A&' If 2z 1is one of the three eigenvalues Al’ Az, and AB’
then by (2.4), 2z must satisfy the equation
23+ (46 - D22 +3(0-8z- Q-8 =o0. (3.5)

This equation does not contain the time increment h. Hence, AG is

independent of h. For ¢ = 1, the solutions of (3.5) are 0, 0, -1,

so that A1 = 1. Hence, the filter is not stable if 6 = 1, Let
§:m 6 m1-21 n = %2, #3 (3.6)
= 8 = , 13, ... .

so that Gn + 1, The following tables indicate the stability of the filter

for different values of n. Note that for n = 3, the roots of (3.5) are

10

B




1
3.
pointed out that this filter is stable if and only if 2/3 < 6§ < 1 although

i, -i, so that A63 = 1 and the filter is unstable. Indeed, Steelman [5]

a proof 1s not given in [5]. These tables verify the truth of the statement.
Note that in Table 1A, for n = 3, sn should be 2/3 instead of .667 and the

filter should be unstable as mentioned above.

: TABLE 1A. STABILITY VS. MAXIMUM MODULUS OF THE EIGENVALUES OF A,
3 N DELTA = 1 - 1/N MAXIMAL MOD OF THE ROOT STABILITY

; 2 0.500 1.1228020 NO

; 3 0.667 0.9999995 NO

4 0.750 0.9158811 YES

: 5 0.800 0.8543339 YES

i 6 0.833 0.8067909 YES

7 0.857 0.7685731 YES

8 0.875 0.7369311 YES

9 0.889 . 0.7101327 YES

10 0.900 0.6870247 YES

n 0.909 0.6668116 YES

12 0.917 0.6489261 YES

13 0.923 0.6329178 YES

, . 14 0.929 0.6184893 YES

15 0.933 0.6054116 YES

; 16 0.938 0.5934409 YES

; 17 © 0 0.941 0.5824399 : YES

! 18 0.944 0.5722803 YES

19 0.947 0.5627684 YES

20 0.950 0.5539731 YES

21 0.952 0.5458879 YES

22 0.955 0.5380396 YES

: 23 0.957 0.5307868 YES

* 24 0.958 0.5239464 YES

! 25 0.960 0.5174800 _YES

: 26 0.962 0.5113528 YES

- 27 0.963 0.5055345 YES

b 28 0.964 0.5000002 YES

; 29 0.966 0.5835004 YES

30 0.967 0.6170683 YES

3] 0.968 0.6419301 YES

32 0.969 0.6621327 YES

33 0.970 0.6793841 YES

34 0.971 0.6942258 YES

35 0.971 0.7074718 YES

36 0.972 0.7193651 YES

37 0.973 0.7301440 YES

1

e e -

Ao




TABLE 1A (Cont)

N DELTA =1 - I/N MAXIMAL MOD OF THE ROOT STABILITY

38 0.974 0.7399907 YES

39 0.974 0.7490339 YES

40 0.975 0.7573915 YES

41 0.976 0.7651453 YES

42 '0.976 0.7723694 YES

43 0.977 0.7791147 YES

44 0.977 0.7854404 YES

45 0.978 0.7913876 YES

T 46 0.978 0.7969885 YES

k : , 47 0.979 0.8022742 YES

o ' 48 0.979 0.8072767 YES

' 48 0.980 0.8120122 YES

! 50 0.980 0.8165183 YES

} TABLE 1B. STABILITY VS. MAXIMUM MODULUS OF THE EIGENVALUES OF A]
N DELTA - 1 + I/N MAXIMAL MOD OF THE ROOTS STABILITY ‘

2 1.500 3.4733100 NO

3 1.333 2.7423110 NO

4 1.250 2.3622870 NO

5 1.200 2.1263980 NO

6 1.167 1.9643850 NO

7 1.143 1.8455800 NO

8 1.125 1.7543650 : NO

9 1.1 1.6819070 : NO

10 1.100 1.6228290 NO

n 1.091 1.5736540 NO

12 1.083 1.5320190 NO

13 1.077 1.4962740 NO

14 1.071 1.4652290 NO

N 15 1.067 1.4379890 NO

16 1.063 1.4138780 NO

17 1.059 1.3923700 . NO

18 1.056 1.3730690 NO

| 19 1.053 1.3556360 NO

20 1.050 1.3398040 NO

21 1.048 1.3253690 NO

22 1.045 1.3121390 NO

23 1.043 1.2999750 NO

24 1.042 1.2887430 NO

25 1.040 1.2783470 NO

26 1.038 1.2686840 NO

27 1.037 1.2596920 NO

28 1.036 1.2512910 NO

29 1.034 1.2434240 NO

30 1.033 1.2360490 NO

12
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TABLE 1B (Cont)

N DELTA - 1 + I/N MAXIMAL MOD OF THE ROOTS STABILITY
3 1.032 1.2291180 NO
32 1.031 1.2225870 NO
33 1.030 1.2164250 NO
34 1.029 1.2105970 NO
35 1.029 1.2050840 NO
i 36 1.028 1.1998570 NO
: 37 1.027 1.1948880 NO
: 38 1.026 1.1901720 NO
39 1.026 1.1856750 NO
2 40 1.025 1.1813930 NO
B 4] 1.024 1.1773080 NO
R 42 1.024 1.1734020 NO
i 43 1.023 1.1696650 NO
{ 44 1.023 1.1660900 ‘NO
: 45 1.022 1.1626620 NO
i 46 1.022 1.1593790 NO
' 47 1.021 1.1562260 NO
48 1.0 1.1531930 NO
49 1.020 1.1502780 NO
50 1.020 1.1474740 NO

NOTE: To give a more accurate picture, we also use the values & = N/50,
N=0, . . ., 00 as in Table 1C.

TABLE 1C. Stability VS. MAXIMUM MODULUS OF THE EIGENVALUES OF A]

N DELTA = N/50 MAXIMAL MOD OF THE ROOT STABILITY
0 0.0000 1.0040010 NO
1 0.0200 1.1561870 NO
2 0.0400 1.1873490 NO
_ ; 3 0. 0600 1.2053820 NO
4 0.0800 1.2170370 . NO
5 0.1000 1.2247450 NO
6 0.1200 1.2296930 NO
/ 7 0.1400 1.2325600 NO
8 0.1600 1.2337690 NO
| 9 0.1800 1.2336110 : NO
i 10 0.2000 1.2325780 NO
1 0.2200 1.2299390 NO
12 0.2400 1.2266840 NO
. 13 0.2600 1.2226040 NO
14 0.2800 1.2177650 NO
15 0. 3000 1.2122150 NO
16 0.3200 1.2060020 NO *
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TABLE 1C (Cont)

N DELTA = N/50 MAXIMAL MOD OF THE ROOT STABILITY ;
i

17 0.3400 1.1991330 NO :

18 0.3600 1.1916550 NO |

19 0.3800 1.1835760 NO ;

20 10.4000 1.1749050 NO e

21 0.4200 1.1656540 NO

22 0.4400 1.1558210 NO

23 0.4600 1.1454680 NO

24 0.4800 1.1344070 NO

25 0.5000 1.1227820 NO

26 0.5200 1.1105690 NO

27 0.5400 1.0977530 NO

28 0.5600 1.0842656 NO

29 0.5800 1.0700990 NO

30 0.6000 1.0552270 *NO

31 0.6200 ). 0396080 NO

32 0.6400 1.0232000 NO

33 0.6600 1.0059480 NO

34 0.6800 0.9877929 YES

35 0.7000 0.9686793 YES

36 0.7200 - 0.9484389 YES

37 0.7400 0.9270499 YES

38 0.7600 0.9043519 YES

39 0.7800 0.8801807 YES

40 0.8000 0.8543406 YES

a1 0.8200 0.8265516 YES

a2 0.8400 0.7964933 YES

43 0.8600 0.7638065 YES

a4 0.8800 0.7275256 YES

a5 0.9000 0.6870258 YES

46 0.9200 0.6407076 YES

47 0.9400 0.5859586 YES

48 0.9600 0.5176454 YES

49 0.9800 0.8165164 YES

50 1.0000 0.9999986 NO

51 1.0200 1.1474740 NO

52 1.0400 1.2783470 - NO

53 1.0600 1.3992770 NO

54 1.0800 1.5134960 NO

55 1.1000 1.6228290 NO

56 1.1200 1.7284450 NO

57 1.1400 1.8311170 NO

58 1.1600 1.9314120 NO

59 1.1800 2.0297310 NO

60 1.2000 2.1263980 NO

61 1.2200 2.2216460 NO

62 1.2400 2.3156780 NO

63 1.2600 2.4086440 NO

64 1.2800 2.5006810 NO

65 1.3000 2.5918890 NO
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TABLE 1C (Cont)

N DELTA = N/50 MAXIMAL MOD OF THE ROOT STABILITY
66 1.3200 2.6823650 NO
67 1.3400 2.7721790 NO
68 1.3600 2.8614030 NO
69 '1.3800 2.9500870 NO
70 1.4000 3.0382880 NO
7 1.4200 3.1260400 NO
72 1.4400 3.2133900 NO
73 1.4600 3.3003620 NO
: 74 1.4800 3.3869950 NO
: | | 75 1.5000 ° 3.4733050 NO
\ 76 1.5200 3.5593280 NO
o 77 1.5400 3.6450760 NO
o 78 1.5600 3.7305680 NO
| 79 1.5800 3.8156280 *NO
| 80 1.6000 3.9008630 NO
{ 81 1.6200 3.9856960 NO
| 82 1.6400 4.0703320 NO
83 1.6600 4.1547900 NO
84 1.6800 4.2390740 NO
85 1.7000 - 4.3232030 NO
86 1.7200 4.4071750 NO
87 1.7400 4.4910080 NO
88 1.7600 4.5747040 NO
89 1.7800 4.6582750 NO
90 1.8000 11.1541500 NO
9] 1.8200 4.7706570 NO
92 1.8400 4.9082810 _ NO
93 1.8600 4.9914050 NG
94 1.8800 5.0744260 NO
95 1.9000 ' 4.6608080 NO
96 1.9200 5.2401970 NO
97 1.9400 5. 3229540 NO
98 1.9600 5.4056270 NO
; 99 1.9800 5.4882250 NO
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The transfer functions ga(z) o [Hl(z), H,(2), H3(z)]T can also be

obtained by substituting w = [§, %?.'Z%]T into (2.8) - (2.10). We have
h

_1 .
d + Oz E
H (2) = — — — » .
1 1+ (46-Dz L +3@-6)22+ (6-1)z3 (3.7)
E(l - z-l)
Hz(z) = _lh _2 _3 ’ (3.8)
1+ (46-3)z + 3(1-48)z + (§-1)z
and
%g(l _ 2-1)2 .
H3(z) = -1 ’ (3.9)

1+ 4s-Nz Y + 30-8z22+ (5-1)z"3

Also, by applying Theorem 2.2, we can uncouple the system (3.3) to yield:

y, = -(46 - 3)yp_l - 3(1~ G)yp_z + @1- c)yp_3 + 6xp * o) (3.10)
' = - - ] - - \] - _2_§ - 2_6_
yp = ~(48-3)yL , - 30-&y , +Q DY 3+ R % " h K-l (3.11)
and
"o o - 1] - ' - "o 26 __‘_0_6_ 28
yp (46 3)yp_1 - 3(1 G)y;,_z + (1 G)yp-_‘i + ﬁxp hzxp_l'i-h—z'xp_z, (3.12)

for p=0,1, 2, ... with initial conditions X =%, " 0 and

A A 0 and Y ;" [y_l. yll. yfllT preassigned. Equations (3.10) -

P
three different graphs, where the graph of {yp} shows how the filter 1

(3.12) enable the user to plot the output response xp = [yp, y', y;]'r in
smooths the input signal {xp}, p=0,1, ... . It is also interesting
to study how close {yp} is to {xp} when & 1is close to but different
from 1. This can be done using the transfer function Hl(z) given in
(3.7) as in the following. Since the filter is stable for % <§<l, we

always pick such values of 6. For simplicity, we set

16
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eE=1-~62>0

so that we have

-1,3
1-H () =€ Q-2 ) . (3.13)
. 1+ (1-4€)z ~ + 3ez ~ - ez
By applying Parseval's identity, we have
T -2 1 (" 1 iw, (2 |
Dby Ped [ e - v et
p=-1 P P 2w -n 1
1 (" ~fw, 2 2 .
-ﬁ[ |1-H1(e 1% W) |© dw (3.14) |
-

where we have used the common notation X(w) = X(e‘“") and x, = 0.

Hence, from (3.13), we have

® 2 W g iw,3
2 2 _¢€ | (L -e ) 2
ly_ 05+ T Ix -y | =——] . : —! |X(w) | “du
-1 p=0 P ‘P 2n - |1+ (l—lot:)e1m+ 3€e:.20‘\_ Eexjw
2¢m 3
1 -
- 4§I ( cosw) ZIX(W)IZ dw, (3.]5)

-1 (1 + pecosw+ 3ecos2w —- ecos3m)2 + (pesim) + 3esin2w - csin3w)

™~
N
\

where Dc = ] - 4

The last expression allows us to design Shepherd's parabolic spline

predictor-corrector digital filter in an optimal way. Depending on the

input spectrum X(w), one can pick € = 1-§ (numerically) such that 0 < e < 1/3
and such that the last expression above is minimized. In particular, i-f we

have faith on the data {xp}, then we can pick € > 0 very close to zero.

This gives 4

17
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gl e T -y |2 4 [| o
At 1

= 5 (X |? aw (3.16)

-1 i+ 2p€cos w + Pe

where p. = 1l ~ 4€ as above. This integral can be used to design the

filter efficiently.

4, THE a-B-Y TRACKERS

The o-B-y tracking equations discussed by Steelman [5] can be obtained
T
from (1.3) - (1.4) by putting w = [a, B/h, Y/l\2] . This shows that each
a~B~y tracker is a third order predictor-corrector filter, and conversely

(e.g. the filter of section 3 is an a~B-Y tracker with B = Y = 26). From

(2.8) - (2.10), the transfer functions of this filter can be found to he

a + (-—2‘0+ B+-%-Y)z-1 + (k- B+~,}-“y)z-?'

H,(2) = —~ (4.1)
1 1+ (a+8+%—y-3)z 1, (-2a—6+%y+ N2+ (a-1)z3
BBt £y,
h h h h h
Hy(z) = 1 1 1 =) = (4.2)
. 1+ (u+8+5y—3)z +. (-20- B+—2-Y+3)z +(a-1)z
and
X - 2 —!—z-1+ X z-2
h2 h2 h2
Hy(z) = 1 =) 1 = = (4.3)
1+ (a+ B+Ey- 3z + (-2a-~ B+§y+ 3)z “ + (a-1)z
These cquations were also obtained in [5) in a different form. Hov;ever,
using the formulation in (4.1) - (4.3), we can immediately uncouple the
filter as in section 2, yielding
y, = -(a+B+iy-3)y _ + (20+B-2y-3y , - (a-1l)y
P 2 p-1 2 p-2 p-3
+ ax -(2a-B-lY)x +(a-B+ly)x
o 277 %1 277 %522 » (4.4)
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‘oo 1 ' g )
Yo (at+B8+35y 3)yp_1 + (20+8 Y 3)yp_2 - (a-l)yl’)_3

] B 28 _ XY , B _x
¥ G h)xp—l + G h)xp—Z ’ (4.5)
and
y" = ~(at+BHay-3)y" . + (2a+B-Ly- 3y - (@a-1)y"
P 2 p-1 2 p-2 p-3
i
{
Y Y Y
+—= x -2 x +—— x .
7% W2 -1 Y 2 %2 (4.6)
ﬁ’ {
- ' where p=0,1,2,...,y=y'=y;;=0 if p < -1 and x_<l=x_2=0.

g ; : P P
‘ The case where o =1 - 93, 8 =-§-(1 - 9)2(] + 0, and Y= (1 - 0)3

is called a "fading memory polynomial filter of degree 2" by Morrison
(cf. [5])). The uncoupled recursive filters (4.4) - (4.0) can be simplified

4 to be

2 3 3
p 36yp_1 30 yp—Z + 0 yp_3 + (-6 )xp

..__«___,._._..._.
<
It

_ _ a2 2,7 _ o
30(1 - 6 )xp_l + 30°(1 B)xp__2 , . (4.7)
' e 3, 3,0 m2 ‘
v = 30y0 ) - 307y 5 + 8y g+ (1-0) (1 +O)x i
2 2 1 2
' - $(1-0) (1+29)xp_1 +5-(1-6) (1+50)xp_2 , (4.8)
i
and .
‘ 3 (1-0)3
" o "o _ " " A2 ) -
! Yo 3eyp_1 30 Yp-2 * 0 Yo-3 * 2 (xp 2xp_1 + xp_z). (4.9)

- o r—

i; for p = 0’ 1’ .o With yp - y") = y; = (Q for pP < -1 and x- = x_z = (.




————— -

Note that the feed-back coefficients are particularly simple. The stability
of this filter is also particularly easy to check. In fact, it is stable if
and only if [8] < 1.

As another special case of the «u-f-y filter, let us set y =0
This is the so-called o-B tracker, studied in WSMR by Gonzales in 1968
(cf. {2]). 1n this case, the factor 1 - z—1 can be cancelled in each of

the expressions in (4.1), (4.2), and (4.3); and the transfer functions

of the a-B tracker simply become

o - (oz--B)z'1

H (Z) = s .
1 1+ (a+B- 2)z_1 - (a- l)z'-2 ‘ (4.10)
3 _8 -1
h h
H,(z) = s
2 1+ (oz+B-_2)z_1 - (@-1)z2 (4.1)
and
Hy(2) = 9. (4.12)

Since the denominator is a quadratic polynomial, we know immcdiately

that this o-8 filter is stable if and only if Aa 8 < 1 where
»

Aa,B :=max[ /a+B -B, a+c 1+/l ]—Bl:l (4.13)

Hence, it follows easily that for B > [(@ + B)/Z]z, we have Aa B <1

if and only if a > 0. That is, a stability condition for the a-8 tracker

is:




T

«>0, @+B)2 <. (4.14)
Another sufficient condition for stability of the o~B filters is

B>0, a+B<2. (4.15)
Of course, the other sufficient condition for stability

a>0, B>0, 2a+B<4, ' (4.16)

which also follows easily, was obtained by Gonzales (cf. [2,5]). Using an

inverse z-transform as in section 2, the a-B tracker equations can be

uncoupled into the form:

y, = -(@+B-2y , + (@-1y _, +ox - @-B)x _,, (4.17)
! = . - - - 1 _B_
yp = ~(@+8-2)y: | + @-1y}_, + h(xp - %) (4.18)

and y" =0, =0, 1, ..., where =y' =0 if <-1 and x =0
Yp P Yp "7 e P

if p < 0. The condition (4.15) is very useful. It says that if the first

fecd-back coefficient is nonnegative and 8 > 0, then the a-8 filter

(4.17) - (4.19) is always stable.

Finally, let us discuss McCool's Qb filter [cf. 3], namely:

@ - —g— b : (4.19)
10M™ + 33M° 4+ 23M - 6

B =245 and ¥ 2 (4.20)
i
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" where M is a natural number. The transfer functions of this filter can ‘n-
obtained by substituting (4.20) into (4.1) - (4.3) and the uncoupled recur-
sive input-output relationship can be obtained from (4.4) - (4.6). We now

study the stability of the QD filter. Set

4 4 . b
f(z) = 23 + [(M+—1)‘”v -~ 3lz7 + [(-2M - 2M1—|)p1 + 3}z + (M),b - 1)

with C’M = 60/ (l()M3 + 33M2 + 23M - 6). If Al’ A and A are the

2’ 3
roots of f(z) = 0 and AM = max(lkll, |A2|, IAWI)’ then by Corollary

2.1, since w Y/h2 = ZDM # 0, we note that the QD digital filter is

3
stable if and only if AM < 1. The following table indicates the

stability of this filter for M =0, *1, *2 ..., *20 .
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TABLE 2.
RO = P

-0.0009
-0.0011
-0.0012
-0.0015
-0.0018
-0.0022
-0.0028
-0.0036

-0.0047 .

-0.0063
-0.0087
-0.0124
-0.0188
-0.0303
-0.0538
-0.1099
-0.2857
-1.2500

-10.0000
-10.0000

.OQQOOOOOO—‘
Q
—t
~J
N

STABILITY FOR McCOOL'S QD FILTER
MAXIMAL MOD OF THE ROOT

.2024780
.2146490
.2282810
. 2437600
.2615480
.2820790
. 3061450
. 3346260
. 3689580
-4111290
.4641570
.5328290
.6252010
. 7560380
.9554370
.2953960
. 0000000
.2570590

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

3

5

4.8910190
13.5226500

0.9999990

0.5061458

0.6546553

0.7329382

0.7819132

0.8155725

0.8401833

0.8589627

0.8737922

0.8857723

0.8956649

0.9040021
.9110962
.9172200
0.9225416
0.9272274
0.9313622
0.9350671
0.9383648
0.9413764

[N =)

STABILITY

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
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